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Abstract-In a closed geological thermosyphon, thermal convection in a closed loop is coupled to con- 
duction in the surrounding earth. Heat flow from an isolated source in such a porous thermosyphon is 
studied using approximate analysis and numerical simulation. Particular problems associated with using 
numerical elements that are of the same size as the structural detail are identified. A Rayleigh number 
definition identical with Bejan’s is obtained, except for an additional ratio of a/c where a is a characteristic 
dimension describing the minor cross-section of the thermosyphon loop and c a characteristic dimension 
for the major diameter of the loop. At a Rayleigh number above I, convection results in a temperature 

reduction near the source. 

1. INTRODUCTION 

A THERMOSYPHON is a loop, either open or closed, in 
which fluid circulates due to natural convection 
caused by a heat source in the lower part of the loop. 
Thermosyphons are of interest because they have been 
successfully applied to a variety of technological prob- 
lems [I]. Most of these applications are above the 
ground, such as in solar hot water systems, the cooling 
of transformers and car engines. Below the ground 
surface, it has been surmised that some geophysical 
processes may contain natural thermosyphons. For 
example, Torrance [2] has studied open-loop ther- 
mosyphons in the context of hydrothermal circulation 
in the oceanic and continental crusts. Thermosyphons 
may play a role in the formation of ore bodies, and 
also may occur either intentionally or unwittingly in 
the underground storage of nuclear waste [3]. 

Studies of thermal convection in fluid saturated 
porous media have often assumed that the properties 
of the porous media are uniform. Only a few examples 
of heterogeneous systems have been investigated, such 
as the studies by McKibbin and O’Sullivan [4, 51 of 
a layered medium. Heterogeneity abounds in nature, 
and it is possible to create theoretically or describe 
through observation many different heterogeneous 
formations. Obviously one study cannot consider all 
types of heterogeneity, thus the thermosyphon pro- 
vides a convenient single category of heterogeneity for 
study. A thermosyphon can exist when a loop of high 
permeability rock occurs within rock of lower per- 
meability. We have limited our study to the case where 
the permeability of the surrounding medium is much 
less (more than four orders of magnitude) than the 
permeability within the thermosyphon. Thus con- 
vection in the thermosyphon is significant long before 
convection in the surrounding medium becomes 
apparent. 

Convection from a point source into an infinite 

medium is simple because there is no length scale to 
characterize the problem other than the location of 
the point of observation relative to the source point 
[6-81. Convection from a spherical cavity is also 
simple because the problem can be described with 
only one length scale (the radius). However, the ther- 
mosyphon is complicated because it has many associ- 
ated length scales: the height of the loop; the width 
of the loop ; the cross-sectional area of the loop ; and 
the length scale(s) associated with the external bound- 
aries of the problem. 

Normally, the wall of a thermosyphon is assumed 
to be insulating, except over short lengths where heat 
enters or is extracted. In the geologic thermosyphon, 
the wall is the boundary of a continuous heat con- 
ducting (and possibly convecting) region through 
which heat escapes. This complicates the formulation 
of the problem because the heat conduction in the 
surrounding medium is intimately coupled with the 
convection in the loop. 

To study the geologic thermosyphon we have per- 
formed a number of numerical experiments. These 
simulations determine the behaviour of a porous ther- 
mosyphon as a function of the various length scales 
involved. An integral part of the problem as we exam- 
ine it here is that the size of the elements is important : 
normally one would choose to use much smaller 
elements but this can be computationally impractical. 
The significance of the choice of element size is dis- 
cussed as the analysis proceeds. We have quantified 
the performance of the thermosyphon in terms of the 
average temperature in the element containing the 
heat sauce instead of using Nusselt numbers or other 
measures of heat transfer. This was because of our 
particular interest in isolated heat sources, possible 
chemical reaction rates and maximum thermal 
stresses. 

The study of thermosyphons has become fashion- 
able over the last few years due to the observation 
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NOMENCLATURE 

a radius of spherical element, or the (7’) temperature within the element 
radius of a sphere inscribed in a cubic containing a heat source [K] 
element [m] V Darcy velocity. 

b radius of spherical boundary, or the 
radius of a sphere inscribed in a cubic 
boundary [m] Greek symbols 

C thermosyphon side length [m] thermal diffusivity, K/PC [ml s ‘1 
C specific heat [J kg- ’ Km ‘1 ;1 coefficient of thermal expansion [K- ‘1 
d distance from point source [m] K thermal conductivity [w mm ’ K- ‘1 

g gravitational acceleration vector P dynamic viscosity [N s mm ‘1 
[m s-‘1 V kinematic viscosity [m’ s- ‘1 

k permeability [m’] P density [kg m- ‘1 

P pressure [N m - ‘1 t temperature difference caused by 

e strength of heat source [w] convection [K] 
r distance from point source [m] 4 porosity. 
Ra Rayleigh number 
t time [s] 
T temperature above reference Subscript 

or background [K] 0 reference value. 

that oscillatory or chaotic flow may occur under 
appropriate conditions [9-131. These conditions 
involve heat fluxes well above values to be expected in 
geophysical applications, thus we have not considered 
them. 

2. THEORETICAL BACKGROUND 

It is instructive to commence by considering heat 
flow from isolated sources in homogeneous media. 
This provides a framework to introduce sequentially 
the various parameters that we used for describing 
heat flow in a thermosyphon. 

For conduction in a homogeneous body, it is only 
necessary to solve the equation 

dT 
- = uV2T at (1) 

where T is the temperature and tl the thermal diffu- 
sivity of the body. Convection requires the incor- 
poration of fluid motion and some additional equa- 
tions. The equations for continuity, motion and 
thermal transport for convection in a fluid saturated 
porous medium are, respectively 

v.pv= _F 

P 
&V = -VP-pg 

aT 
z+~VT=aV2T 

where v is the Darcy velocity of the fluid, k the per- 
meability of the medium, p the dynamic viscosity of 
the fluid, p the pressure, g the gravitational accel- 

eration vector, p = p(T) the density of the fluid, and 
tl is now the thermal diffusivity of the saturated porous 
medium. For slightly compressible liquids it is con- 
venient to use the relationship 

P = ~o(l -BT) (5) 

for the density, where jJ is the coefficient of thermal 
expansion and p,, a reference density when T = 0. 

2.1. Steady conduction from a spherical source 
The easiest relevant problem to begin with is steady 

conduction from a point source of strength Q into 
an infinite medium of thermal conductivity K. The 
solution gives the temperature Tat a distance r from 
the source as 

T=& 
where T+Oasr+a. 

In a numerical method such as finite elements or 
integrated finite differences, temperatures averaged 
over a region are calculated rather than temperatures 
at single points. Neglecting for the moment that 
numerical methods use polyhedra (such as cubes) to 
fill space instead of spheres, consider a spherical 
region of radius a centred on a point source. The 
average temperature (7’) within this region is deter- 
mined from 

Zn II 0 

s ss 
T(r, 8, $)r2 sin 0 dr dfI d+ 

0 00 

(7) 

in spherical coordinates. Substituting equation (6) 
into equation (7) gives 
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FIG. 1. Definitions of the length scales involved in defining 
concentric spheres. 

<T)=Z (8) 

as the average temperature within the sphere. If the 
sphere for averaging had not been centred on the 
source, but had been centred a distance d away from 
the source, then the average temperature within the 
sphere could be determined from 

r2 sin 0 

X,/(r2+d2-2rdcos@drdedQ (9) 

which gives the result 

(3a2-d2) if d< a (10) 

and the result 

(T)=gd if d>a. (11) 

Thus the average temperature falls from a maximum 
when the averaging sphere is centred on the source, 
first in a parabolic fashion while the source is within 
the averaging sphere (d < a), then as the inverse first 
power of the distance when the source is outside the 
averaging sphere (d > a). 

2.2. Conduction to ajinite spherical boundary 
Infinite media are never real, and infinite meshes 

are difficult to create for numerical simulation. Thus 
it is worthwhile to consider conduction to a finite 
spherical boundary of radius b fixed at temperature 
T = 0 (Fig. 1). The average temperature within the 
inner sphere of radius a is given by 

<r>=e A_’ [ 1 47~ 2a b ’ (12) 

2.3. Convection from a point source 
When studying thermal convection in porous 

media, the usual approach to obtain analytical solu- 
tions has been to use the Boussinesq approximation 
in which density changes are accounted for only in the 
buoyancy term in the equation of motion (equation 

(5) is used in equation (3), but not in equation (2)). 
There have been few studies of convection from iso- 
lated sources or in unbounded media. An exception 
to this has been Wooding [14], who considered a 
horizontal line source of thermal energy located in an 
infinite, fluid-saturated porous medium. 

More recently, Bejan [6] determined the small Ray- 
leigh number approximation for convection around 
a point source in an infinite medium. He defined a 
Rayleigh number as 

Ra = QgkB 
i&z (13) 

where Q is the energy generated per unit time, g the 
gravitational acceleration, k the permeability, b the 
coefficient of thermal expansion, tl the effective ther- 
mal diffusivity, /* the dynamic viscosity and C the 
specific heat of the fluid. Bejan’s solution for the tem- 
perature in spherical coordinates is 

T=& l+~cosORa+5cos20Ra2 
[ 

1 

+ 55 296~ 
---------cos 6(47 cos2 B-30)Ra3+... 

I 

(14) 

where T is measured above the temperature at r + 
00. In the absence of any boundary surface that can 

inhibit motion, any deviation from an isothermal state 
will result in fluid motion. There is not a critical Ray- 
leigh number below which convection does not occur, 
only a value at which it becomes insignificant. 

As we have indicated, when using numerical 
methods based on discretizing space such as finite 
differences or finite elements, the temperature at an 
arbitrary infinitesimal point cannot be determined. 
Rather, the averages within many regions (the 
elements) are calculated. In this vein, it was of use to 
determine the average temperature within a sphere of 
radius a centred on the point source. When equation 
(14) is substituted into equation (7) the following 
equation can be obtained from Bejan’s solution : 

1-&4$+0(R~4)..~ . 1 (15) 

A numerical method with an element centred on the 
point source should give an answer similar to equation 
(15) for the average temperature in the element. Thus 
a numerical method that discretizes at a different 
length scale a will give a different value of (r>, but the 
value of Ra will not be different. Note that convection 
starts to become important when Ra > 10. 

Hickox and Watts [7] have studied steady thermal 
convection from an isolated source in a porous 
medium by using similarity transforms. They 
obtained a number of numerical results from which 
velocity and temperature fields can be constructed for 
a specific set of Rayleigh numbers. 
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FIG. 2. Definitions of the length scales involved in defining 
a thermosyphon imbedded in a cube. 

2.4. Convection between two surjixw 
Convection between two horizontal surfaces is 

characterized by the distance between the two surfaces 
L. This length scale appears in the definition of the 
Rayleigh number for such a configuration when heat 
is emitted from the bottom surface [ 151 

(16) 

where AT is the temperature difference between the 
plates and v the kinematic viscosity. A similar defi- 
nition occurs for convection bounded by vertical 
coaxial cylinders, where L is identified as the distance 
between the cylinders [ 16, 171. For the thermosyphon 
it would be expected that the additional length scales 
would comprise part of the Rayleigh number defi- 
nition. The question is to resolve exactly how they 

appear in the definition. 

3. CONVECTION IN A THERMOSYPHON 

To describe a thermosyphon it is first necessary 
to define some length scales. This can be done by 
extending the existing definitions for a sphere and 
a cube (Fig. 2). It is convenient for the numerical 
simulations to have the quantities b and c an integral 
number of multiples of a. 

In the geologic thermosyphon, the formulation of 
the problem is complicated because the heat transport 
in the surrounding medium is intimately coupled with 
transport in the thermosphon loop. Like Torrance [2], 
we used the simplification that heat in the surrounding 
rock was assumed to travel only by conduction. How- 
ever, Torrance introduced a further simplification in 
which the surrounding medium had a high thermal 
conductivity so that the thermosyphon wall had a 
temperature approaching the ambient geothermal 
gradient. We did not make such an assumption. 

If steady-state conditions exist, the source strength 
Q will equal the heat flow out of the element con- 
taining the source. Heat transport out of the element 

containing the source occurs through two mechan- 
isms, conduction and convection 

Q = Qcon~uctmn + Qconvectmn. (17) 

Conduction has already been discussed, and is quant- 
ified by equation (8). When fluid circulates, warm 
fluid will leave the source element and be replaced by 
colder fluid. This heat transport due to convection, 

QCO”YCcll”.~ will be the difference in the rate of heat 

leaving the element and the heat entering the element. 
When the fluid motion is relatively small, this can 
be determined from the temperatures in the elements 
adjacent to the element containing the source given 
by equation (I 1) with d = 2u, namely (7’)/3. Thus, 

providing that convection is small, the heat how out 
of the element containing the source will be approxi- 
mately 

Q= Y(Q+ ~vpCu2(T) (18) 

where v is the Darcy velocitiy of fluid flow around the 
loop (the loop has cross-sectional area 4~‘). 

The steady velocity of the fluid around the ther- 

mosyphon loop occurs when the viscous drag balances 
the buoyancy driving force. In a continuum this could 

be written as 

v = -k- 
4/K 

p,/W(l)g dl (19) 

where the integral dl is taken around the closed ther- 
mosyphon loop and v is averaged across the cross- 
section of the thermosyphon loop. The Boussinesq 
approximation means that c is constant around the 
loop. In a square thermosyphon the two horizontal 
segments will not contribute to the buoyancy, so 
only the vertical segments need to be included 

A further assumption is to assume that most of the 
additional heat has been lost when the fluid gets half- 
way around the loop, thus only the first term in equa- 
tion (20) is important. If heat transport is dominated 
by conduction. the average temperatures in the 
elements above and including the heat source can be 

summed. For example 

Thus, for three elements in the vertical arm containing 
the source 

(22) 

The numerical factor would vary only slightly if we 
had summed over four elements rather than three (7% 
variation). Substituting equation (22) into equation 
(18) gives 
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(n--Q = 0. (23) 

Providing that the coefficient of (7’) 2 is small, a series 
expansion of the positive root can be obtained 

(24) 

Thus, convection becomes more important than con- 
duction when 

(25) 

The variables in this ratio define a Rayleigh number 
for the thermosyphon as 

This is the same as equation (13) except for the 
additional ratio a/c. Using this definition of Rayleigh 
number equation (24) can be written as 

<r)=g [ l- &Ra-*[Ra12 1 . (27) 

This equation gives an estimate of the performance of 
the thermosyphon for small Rayleigh number. Larger 
Rayleigh numbers are considered below. 

4. NUMERICAL STUDIES 

Beyond the simple results above, progress has only 
been made with sophisticated numerical techniques. 

A number of numerical codes have been written to 
simulate fluid and heat flow in rock. Several of these 
have been described in a review by O’Sullivan [18]. 
SHAFT, MULKOM and TOUGH originated at the 
Lawrence Berkeley Laboratory [ 191. We chose to use 
SHAFT79 for the present work because it has received 
widespread application and testing, and it is well docu- 
mented [20, 211. Based on the integrated finite-differ- 
ence method, SHAFT79 (Simultaneous Heat and 
Fluid Transport) solves the coupled equations (2)-(4) 
for heat and fluid flow in porous rock. 

4.1. Simulation specifics 
All the simulations reported here were run with 

uniform initial temperature conditions of 323 K 
(SOC). During the simulations the outer boundary was 
maintained at 323 K, and all temperatures identified 
by Tin this section are relative to this reference value. 
The following constants were assigned to the rock : 

density p0 = 2600 kg m- 3 
porosity 4 = 0.10 
thermal conductivity IC = 2.1 W m- ’ K- ’ 
specific heat C= lOOOJkgg’K-’ 
thermal diffusivity cc=&lxlO-‘m2s-’ 

where u = KIPC. 

SHAFT79 uses a table for fluid properties that are 
a function of temperature. The coefficient of thermal 
expansion p is approximately 5 x lop4 K- ’ for water 
around 323-333 K, and the viscosity of water p is 
approximately 1 .O mN s m- 2. 

We found that for a design feature as complex as 
the thermosyphon, which has only one plane of sym- 
metry, at least 196 elements were required for mean- 
ingful results in three dimensions. This number is 
determined in the following manner. In one dimen- 
sion, for n elements that have a temperature that can 
vary, n + 2 elements are required, which includes the 
fixed temperature elements at the two ends. In three 
dimensions, this translates to (n +2)3 elements. But 
the thermosyphon does have one plane of symmetry 
which can be used to reduce the number of elements 
to (n +2)2(n+ 3)/2. At least one element is required 
for the centre of the thermosyphon, a layer for each 
side of the loop, and a layer outside the loop. Thus 
the minimum value for n = 5, corresponding to 
7 x 7 x 4 = 196 elements. If n = 7, 405 elements are 
required. 

Simulations were run until both the maximum 
internal energy change and the maximum density 
change were below predetermined values. Although 
not a true steady state, this represents an effective 
steady state. The default value for energy change was 
set at 1.0 J mm3 and the default value for density 
change was 1 x 10e4 kg rnm3. 

4.2. Steady conduction from a cubic source 
As we have already indicated, numerical methods 

use polyhedra to fill space rather than spheres. Thus, 
the simplest relevant problem for numerical study is 
conduction from a hollow cube. With a cubic outer 
boundary this problem has three planes of symmetry, 
thus only one-eighth of the region of interest needs to 
be simulated. We may reasonably guess that the hol- 
low cube with outer side length 2b and inner side 
length 2a would be similar to the hollow sphere solu- 
tion above, except the coefficients of a and b. That is, 
we expect an equation of the form 

(T>=L 3y,_E 
L 1 4nlc 2a b 

(28) 

with the constants y, and y2 to be determined. We 
performed a series of simulations with b held constant 
to determine the coefficient of a, then we performed a 
series of simulations with a held constant to determine 
the coefficient of b. In this way, from numerical exper- 
iments with SHAFT79. we obtained the result 

(T)=&[T-+5]. (29) 

This means that the larger the inner cavity, the cooler 
the temperature within the cavity, assuming that the 
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Table 1. The formula ( r> = (Q/4mc) [( 1.60/a) - (1.05/b)] compared to numeri- 
cal simulations for convection in a cube with c = 6a = 66/5. The accuracy of 

the formula is shown in the table 
-. ~~._ 

CT) 
c = 6a = 6b/5 (Q/4nK)[(l,60/a)-(1.05/b)] Simulated Difference 

18.0 35.2 
21.0 23.5 
36.0 17.6 
45.0 14.1 
54.0 11.7 
72.0 8.80 

-___-__.._-. .~_ 

temperature within the cavity is uniform. With com- 
mon numerical methods, such as the one we have 
used, distances smaller than the element size are not 
resolved (as we have already discussed). We may 
assume that the inner cavity is either highly conduct- 
ing, or contains well-mixed fluid. In these numerical 
simulations we used a heat source Q = 8 kW. With a 
thermal conductivity K = 2.1 W m- ’ K- ‘, this gives 
Q/~~cK = 304 m K. The results shown in Table 1 indi- 
cate the accuracy of equation (29) for determining the 
temperature in the source element. 

This solution for conduction from a cubic source 
can now be used as a reference for convection prob- 
lems, as all convection problems we considered have 
a conduction component based on the first term in 
equation (27). Temperatures relative to the equivalent 
conduction problem are denoted by 7, where 7 is 
defined by 

Equation (30) is of the same form as equation (15). 

5. STEADY CONVECTION IN A 

THERMOSYPHON 

Continuing with the length scales defined earlier, it 
is only practical to define a small number of three- 
dimensional meshes for numerical simulation. The 
quantities b and c have to be an integral number of 
multiples of a. The meshes used in our simulations are 
illustrated in Fig. 3. The top mesh in Fig. 3 requires 
196 elements, the two meshes in the second row 
require 405 elements, and the three in the bottom 
row require 726 elements. This is a large number of 
elements: SHAFT79 was originally limited to 501 
elements [20]. 

We examined thermal convection by systematically 
examining the various components of the Rayleigh 
number. First we considered the permeability k and 
the strength of the heat source Q. 

5.1. Permeability and heat input 
Inspection of equations (24)-(26) indicates that 

(T> should be independent of kQ below some cri- 
tical value, and a function of kQ above this value. 
This expectation was verified in the numerical exper- 

~_ ~ .._~ 
35.2 0.0 
23.5 0.0 
17.6 0.0 
14.0 0.1 
11.7 0.0 
8.81 0.01 

iments. Results with a = 6 m, b = 30 m and c = 24 m 
are plotted in Fig. 4. It is apparent that there is a 
critical value of kQ above which convection becomes 
important. Above the critical Rayleigh number, we 
observed that z is approximately proportional to 

Q &kQ. 

5.2. Gravity 

A set of simulations was performed with all the 
parameters except gravitational acceleration g held 
constant. The results of these simulations with various 
values of g are shown in Fig. 5. In this set of simu- 
lations,a=6m,b=30m,c=24m,k=3.0x10-’2 
m2 and Q = 2.0 kW, so that the Rayleigh number 
defined by equation (26) is approximately 1 .lg. We 
observed that convection is insignificant for values of 
g below 0.1. Above a value of 1 .O convection becomes 
important, thus the critical value of the Rayleigh num- 
ber from this data is approximately 1. The curve in 
Fig. 5 is very similar in shape to Fig. 4, with 7 being 

approximately proportional to log g above the critical 
Rayleigh number. 

5.3. Length scales 

As discussed above, there are several length scales 
that are required to describe a thermosyphon. There 
is the length scale that describes the outer boundary, 
b, the length scale for the minor dimension of the 
loop, a, and the length scale for the side of the loop, 
c. There is also another length scale. If a ther- 
mosyphon is symmetrically placed with respect to the 
external boundaries, then the heat source is not at the 
centre, but is offset toward a boundary corner. In 
presenting the results, we have ignored this offset 
length scale. With this approximation, the results 
shown in Figs. 6-9 were obtained from simulations 
with SHAFT79. 

The effect of the distance to the outer boundary, b, 
was determined while holding a and c constant. When 
this was done, it appeared that 7 cc -l/b, but 
this effect was small (Fig. 6). Consequently, the effect 
of b on convection was ignored, b only being con- 
sidered for conduction (equation (30)). This consider- 
ably simplifies the analysis, because dimensionless 
groups involving b can be omitted, leaving only a 
and c. 

The effect of uniformly enlarging the thermosyphon 
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(0 

(iv> w 
FIG. 3. Cross-sections of the six three-dimensional meshes used in the simulations. The thermosyphon loop 
is shown in light gray, and the element containing the heat source is shown in dark gray. Mesh (i) requires 

196 elements, meshes (ii) and (iii) require 405 elements, and meshes (iv)-(vi) require 726 elements. 

is shown in Fig. 7. az is plotted against logk with where Ra is furnished by equation (26) and the fimc- 
c = 4a, Q = 2.0 kW and b = Sa. Changing a and c tionfis given by 
together so that the ratio a/c remained constant had 
only a small effect. A pattern is emerging. The results .f(Ra) = _Bi n2 Ra 
are consistent with an equation of the form 

for small Ra (Ra < lo), from equation (27) 

(31) 

0.008 

0.006 

z/Q 
0.004 

q Q= 500 

0 Q=lOOO 
0 Q=2OGO 
l Q=4OfXI 
’ Q=SOOo 

1% kQ 
FIG. 4. The effect of permeability and heat input : a plot of 

r/Q against log kQ. a = 6 m, 6 = 30 m and c = 24 m. 
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3 

z 
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1 

. o- ...--r . ..- . ..+ -7 

.COOl .OOl .Ol .I 1 10 100 

t? 

FIG. 5. The effect of gravity: a plot of T against 9. k = 
3x10-‘*m2,Q=2kW,a=6m,b=30mandc=24m. 
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0.00 0.02 0.04 

l/b 

0.06 0.08 

FIG. 6. The effect of the distance to the outer boundary: 
a plot with a and c fixed, showing the effect of b and k 
on T. The effect of b is small. Q = 2 kW, a = 3.33 m and 

c = 13.33 m. 

f (Ra) - log Ra 

for intermediate Ra (10 < Ra < 1000). 

The effect of the side length of the thermosyphon, 
c, is shown in Fig. 8, with a = 3.33 m, and in Fig. 9, 
with a = 10.0 m. In these figures z is plotted against 
log k/c with b = 30 m and Q = 2.0 kW. The depen- 
dence on the side length, c, is similar to the previous 

plots. If c is large, then the Rayleigh number is small, 
and the reduction in (n is insignificant, consistent 

with the prediction of equation (31). A large loop 
provides so much resistance that fluid motion is 
inhibited. As the loop becomes smaller, the reduction 
in the temperature of the source element begins to 
become significant. However, as heat transport 
around the loop improves, the Rayleigh number 

BO- 

60- 

ar 

n log k = -17.0 
0 logk=-12.0 
. log k = -11.5 
. logk=-11.0 
n log k = -10.5 
cI logk=-10.0 

-18 -15 -12 -9 

log k 

FIG. 7. The effect of uniformly enlarging the thermosyphon : 
a plot of UT against log k with c = 4a, Q = 2.0 kW and 
b = 5a. It is apparent that changing a and c together so that 

the ratio a/c remains constant has little effect. 

20 

a=3.33 m A 
A 

A log k = -10.5 
A 

0 logk=-11.0 
n logk=-11.5 
A logk=-12.0 

z l logk=-13.0 
0 

10 q log k = -14.0 0 

0 

8 

n 

A“ 
I 

0 -SC=, .a-, I . I . 

-16 -15 -14 -13 -12 -11 

log klc 

FIG. 8. The effect of the circumference of the thermosyphon : 
a plot of z against log k/c with a = 3.33 m, b = 30.0 m and 

Q = 2.0 kW. 

becomes larger and the approximations described 
above are no longer valid. In particular, if the heat is 
able to travel around the loop so rapidly that there is 
little heat loss before the heat returns to the source 
element, then the length c has little effect. 

The numerical requirement to keep b and c an inte- 

gral number of a means that the effect of a cannot 
be determined directly by holding b and c constant 
without using a prohibitively large number of 

elements. However, the data displayed in Figs. 8 and 
9 can be combined (Fig. 10) to examine the effect of 

varying a by plotting a7 against log ak/c. Again the 
results are consistent with an equation of the form of 
equation (31). 

6. CONCLUSION 

We have studied heat flow from an isolated source 

in a closed geologic thermosyphon using approximate 
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a = 10.0 In A 
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A log k = -10.5 
0 logk=-11.0 
u logk=-11.5 
A log k -12.0 = 
•I log k = -14.0 
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0 

0 

w 
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I. 

I . 
.I7 -16 -15 -14 

log klc 

-13 -12 

FIG. 9. The effect of the circumference of the thermosyphon ; 
a plot of z against log k/c with a = 10.0 m, b = 90.0 m and 

Q = 2.0 kW. 
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log aklc 
-12 -11 

FIG. 10. Combining Figs. 8 and 9: a plot of ut against 
log ak/c with Q = 2.0 kW. 

analysis and numerical simulation. A numerical 
method obtains a lower temperature in the element 
containing the source if a larger region surrounding 

the source is averaged. This is a problem associated 
with using numerical elements that are of the same 
size as the structural detail. However, this does not 
influence the determination of the Rayleigh number. 

A Rayleigh number definition identical to Bejan’s, 
except for an additional ratio of a/c where a is half 
the thickness and c the side length of the thermo- 

syphon loop, was effective in describing the per- 
formance of a geologic thermosyphon. At a Rayleigh 
number above 1, convection resulted in a temperature 
reduction in the vicinity of the source. Temperature 
reduction could also be obtained by enlarging the 
cavity containing the source. 
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CONVECTION DANS UN THERMOSIPHON POREUX NOYE DANS UN MILIEU 
CONDUCTEUR 

Rbum&Dans un thermosiphon gtlogique, la convection thermique dans une boucle fermbe est couplCe 
$ la conduction dans la terre environnante. On ttudie le flux thermique B partir d’une source unique dans 
ce thermosiphon en utilisant l’analyse approchte et la simulation numkrique. On identifie des problemes 
particuliers associCs avec l’usage des &ments numiriques qui sont de la mdme taille que le d&tail structurel. 
Une dkfinition de nombre de Rayleigh identique B celle de Bejan est obtenue, except6 pour un rapport 
additionnel a/c od a est une dimension caracttristique decrivant la plus petite section droite de la boucle 
du thermosiphon et c est une dimension caracttristique du plus grand diamttre de la boucle. Pour une 
valeur du nombre de Rayleigh superieure g 1, la convection accompagne une rtduction de temperature 

prZs de la source. 

KONVEKTION IN EINEM POROSEN THERMOSYPHON IN EINEM LEITENDEN 
MEDIUM 

Zusammenfassung-In einem geschlossenen geologischen Thermosyphon ist die therm&he Konvektion in 
einem geschlossenen Kreislauf mit der Wlrmeleitung im umgebenden Erdreich gekoppelt. Die W%rme- 
strijmung von einer isolierten Quelle in einem solchen poriisen Thermosyphon wird unter Verwendung 
analytischer NIherungen und numerischer Simulationsrechnungen untersucht. Bei der Verwendung numer- 
ischer Elemente derselben GriiBe wie die strukturellen Einzelheiten ergeben sich spezielle Probleme. Es 
wird eine Definition der Rayleigh-Zahl verwendet, die mit derjenigen von Bejan nahezu iibereinstimmt. 
Der kleine Unterschied besteht in der zusltzlichen Anwendung eines Verhlltnisses a/c, wobei a und c 
charakteristische Abmessungen sind, welche die kleinste bzw. grijl3te Querschnittsfliche der Thermo- 
syphon-Schleife beschreiben. Fiir Rayleigh-Zahlen oberhalb 1 fiihrt die Konvektion zu einer Tem- 

peraturabsenkung in der Nlhe der’Quelle. 

KOHBEKUHR B I-IOPHCTOM TEPMOCH@OHE, I-IOI-PYmEHHOM B I-IPOBOJ(5I~YIO 
CPEAY 

AeoTwB cnygae ~~MKH~TOTO reonof~%?c~oro TepMocH@oHa TerrnoBaR I(OHB~KUH~I B HeM cBR3aria 
C npoBO~ocrbw,OKp~~rneitnOnBbl. C IlOMOIUblO rrpH6Jwremroro 8AKJlH3aH‘iHcJIeEHO~OMOAeJlH- 

posm HccneAyeTcn Tennoeo~ UOT~K 0T a30Jmpoeamroro Hcroqririrra B paccMa-rpaeaeMoM nopacro~ 
T~MOCH~OHe. PeIlliUOTCK EO Hsprnwe 3a~w1,cBa3~e c mxronb30BilIIPeM hwrona KoHeswM we- 

MeHToB, pa3Mep ro~opbn paseH pa3bfepy crp~-rypribrx AeTaJrefi. SECJIO P3nea WerrrWtro 3rraqemim, 
orq.teaenneMoMy BencarioM, 3a sicruno¶emieM ~orroJrmrreJrbrior0 omomemin a/c, me a si c xaparrepabre 
pa3hfepbr, cooTBeTcreymrrrrre MeHbmw A 6oonameh5y ce=ieaBliM TepMoclr@oHa. IIpa 3riaqemrrrx qncna 

P3JIer BbUlIe 1HOHBe@Ull'lpABOi@iTK nOH=eHHIoTeMn~aTypbI B6Jlli3E ACTOWiEiKa. 


